
Toward portable I/O performance by leveraging system
abstractions of deep memory and interconnect hierarchies

François Tessier, Venkatram Vishwanath, Paul Gressier

Argonne National Laboratory, USA

Wednesday 23rd August, 2017

Data Movement at Scale

I Computational science simulation in scientific domains such as in
materials, high energy physics, engineering, have large I/O needs

Typically around 10% to 20% of the wall time is spent in I/O

Table: Example of I/O from large simulations

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

I Increasing disparity between computing power and I/O performance in the
largest supercomputers

 0.0001

 0.001

 0.01

 0.1

 1997 2001 2005 2009 2013 2017

R
a
ti

o
 o

f
I/

O
 (

T
B

/s
)

to
 F

lo
p

s
(T

F
/s

)
in

 p
e
rc

e
n

t

Years

IOPS/FLOPS of the #1 system in Top 500

Complex Interconnect Hierarchies

I On BG/Q, data movement needs to fully exploit the 5D-Torus topology
for improved performance

I Additionally, we need to exploit the placement of the I/O nodes for
performance

I Cray supercomputers have similar challenges with dragonfly-based
interconnects together with placement of LNET nodes for I/O

Compute nodes I/O nodes

Storage

Q
D

R
 In

fin
ib

an
d

sw
itc

h

Bridge nodes

5D Torus network
2 GBps per link 2 GBps per link 4 GBps per link

PowerPC A2, 16 cores
 16 GB of DDR3

GPFS filesystem

IO forwarding daemon
 GPFS client

 Pset
128 nodes

 2 per I/O node

Mira
- 49,152 nodes / 786,432 cores
- 768 TB of memory
- 27 PB of storage, 330 GB/s (GPFS)
- 5D Torus network
- Peak performance: 10 PetaFLOPS

Deep Memory Hierarchies and Filesystem characteristics

I We need to exploit the deep memory hierarchy tiers for improved
performance

This includes effective ways to seamlessly use HBM, DRAM, NVRAM,
BurstBuffers, etc.

I We need to leverage filesystem specific features such as OSTs and striping
in Lustre, among others.

 Compute node

Storage

 Aries router
Knights Landing proc.
 4 per router

Lustre filesystem

 2D all-to-all structure
 96 routers per group

36 tiles (2 cores, L2)
16 GB MCDRAM
192 GB DDR4
128 GB SSD

 Intel KNL 7250
Dragonfly network

 Elec. links 14 GBps

6
(le

ve
l 2

)

16 (level 1)

Dragonfly network
Opt. links 12.5 GBps

 Compute node

2-cabinet group
 9 groups - 18 cabinets
 16 x 6 routers hosted
 All-to-all

(le
ve

l 3
)

IB FDR
 56 GBps

Service node
 LNET, gateway, …
 Irregular mapping

TAPIOCA

I Library based on the two-phase I/O scheme for topology-aware data
aggregation at scale on IBM BG/Q with GPFS and Cray XC40 with Lustre
(Cluster’17)

Topology-aware aggregator placement taking into account
• The topology of the architecture
• The data access pattern

Capure the data model and data layout to optimize the I/O scheduling
Pipelining (RMA, non-blocking calls) of aggregation and I/O phases
Interconnect architecture abstraction

X Y Z X Y Z X Y Z X Y Z

Processes

Data

Aggregator

File

3210

Buffers

Round 1 1

X X X

X Y

RMA operations

Non-blocking
MPI calls

Abstractions for Interconnect Topology

I Topology characteristics include:
Spatial coordinates
Distance between nodes: number of hops, routing policy
I/O nodes location, depending on the filesystem (bridge nodes, LNET, ...)
Network performance: latency, bandwidth

I Need to model some unknowns and uncertainties such as routing,
contention

Figure: 5D-Torus on BG/Q and intra-chassis Dragonfly Network on Cray XC30
(Credit: LLNL / LBNL)

Abstractions for Interconnect Topology - Our current approach

I TAPIOCA features a topology-aware aggregator placement
I This approach is based on quantitative information easy to gather:

latency, bandwidth, distance between nodes

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v
I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j

I C1 =
∑

i∈VC ,i 6=A

(
l × d(i , A) + ω(i,A)

Bi→A

)
I C2 = l × d(A, IO) + ω(A,IO)

BA→IO

I TopoAware(A) = min (C1 + C2)
Vc : Compute nodes
IO : I/O node
A : Aggregator

C1

C2

I Contention-aware algorithm: static and dynamic routing policies, unknown
vendors information such as routing policy or data distribution among I/O
nodes, ...

TAPIOCA

I Outperfoms MPI I/O on the IO kernel of HACC and two data layouts on a
Cray XC40 + Lustre and BG/Q + GPFS

HACC: Large-scale simulation of the mass evolution of the universe with
particle-mesh techniques (A particle is defined by 9 variables).
1024 nodes, 16 ranks per node
Best PFS configuration for MPI I/O

• Lustre: 48 OST, 8 MB stripe size, 192 aggregators
• GPFS: 16 aggregators per Pset (128 aggr), 16 MB buffer size

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

R: 2.7x

W: 3.8x

I/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Data size per process (MB)

TAPIOCA - Read
TAPIOCA - Write

MPI-IO - Read
MPI-IO - Write

(a) Cray XC40 + Lustre

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

R: 6.7x

W: 10.6x
I/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Data size per process (MB)

TAPIOCA - Read
TAPIOCA - Write

MPI-IO - Read
MPI-IO - Write

(b) BG/Q + GPFS

Figure: Array of structures data layout

TAPIOCA

I Outperfoms MPI I/O on the IO kernel of HACC and two data layouts on a
Cray XC40 + Lustre and BG/Q + GPFS

HACC: Large-scale simulation of the mass evolution of the universe with
particle-mesh techniques (A particle is defined by 9 variables).
1024 nodes, 16 ranks per node
Best PFS configuration for MPI I/O

• Lustre: 48 OST, 8 MB stripe size, 192 aggregators
• GPFS: 16 aggregators per Pset (128 aggr), 16 MB buffer size

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

R: 2.3x

W: 3.6xI/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Data size per process (MB)

TAPIOCA - Read
TAPIOCA - Write

MPI-IO - Read
MPI-IO - Write

(a) Cray XC40 + Lustre

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

R: 1.3x

W: 1.2x

I/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Data size per process (MB)

TAPIOCA - Read
TAPIOCA - Write

MPI-IO - Read
MPI-IO - Write

(b) BG/Q + GPFS

Figure: Structure of arrays data layout

TAPIOCA - Ongoing research

I Move toward a generic data movement library for data-intensive
applications exploiting deep memory/storage hierarchies as well as
interconnect to facilitate I/O, in-transit analysis, data transformation,
data/code coupling, workflows, ...

X Y Z X Y Z X Y Z X Y Z

Application

Data

AggregatorsX X X X Y Y

Y Y Z Z Z Z TargetX X X X Y Y

Y Y Z Z Z Z

P0 P1 P2 P3

P0 P2 DRAM, MCDRAM,
NVRAM, BB, ...

DRAM, MCDRAM,
NVRAM, PFS, BB, ...

DRAM, MCDRAM, ...

Dragonfly, torus, ...

Dragonfly, torus, ...

Network Memory/Storage

Abstractions for Memory and Storage

I Topology characteristics including
spatial location, distance

I Performance characteristics:
bandwidth, latency, capacity

I Access characteristics such as
byte/block-based, concurrency

I Persistency

Memory API (alloc, store, load, free, …)

Abstraction layer (mmap, pmem, …)

DRAM HBM NVRAM PFS BB

Application

Listing 1: Function prototypes for memory/storage data movements
vo id memAlloc (vo id ∗bu f f , i n t64_t bu f f S i z e , mem_t mem) ;
vo id memFree (vo id ∗bu f f , mem_t mem) ;
i n t mem{Write , S to r e } (vo id∗ s r cBu f f e r , i n t64_t s r c S i z e ,

vo id ∗de s tBu f f e r , mem_t mem, i n t64_t o f f s e t) ;
i n t mem{Read , Load} (vo id∗ s r cBu f f e r , i n t64_t s r c S i z e ,

vo id ∗de s tBu f f e r , mem_t mem, i n t64_t o f f s e t) ;
vo id memFlush (vo id ∗bu f f , mem_t mem) ;

I Work in progress with open questions
Bluring boundary between memory and storage (MCDRAM, 3D XPoint
memory, ...)
Some data movements need one or more processes involved at destination
(RMA window, flushing thread, ...)
Scope of memory/storage tiers (PFS vs node-local SSD)
Data partitioning to take advantage of fast memories with smaller capacities

Conclusion

I TAPIOCA, an optimized data-movement library incorporating
Topology-aware aggregator placement
Optimized data movement with I/O scheduling and pipelining
Hardware abstraction insuring performance portability

I Performance portability on two leadership-class supercomputers: Mira
(IBM BG/Q + GPFS) and Theta (Cray XC40 + Lustre)

Same application code running on both platforms
Same optimization algorithms using an interconnect abstraction

I Promising preliminary results with memory/storage abstraction
I An appropriate level of abstraction is hard to define

Specific abstraction for every system including the architecture, filesystems,
capturing every phase of deployment, relevant software versions, ...
Generalized abstraction that maps to current and expected future deep
memory hierarchies and interconnects

I Future work: Come up with a model helping to take smart decision for
data movement

Acknowledgments
I Argonne Leadership Computing Facility at Argonne National Laboratory
I DOE Office of Science, ASCR
I Proactive Data Containers (PDC) project

Conclusion

Thank you for your attention!
ftessier@anl.gov

MPI-IO and TAPIOCA - Data layout

X Y Z X Y Z

Processes

Data

Aggregator

X X

File

X Y Z X Y Z

P0 P1

Y Y

Z Z

X Y Z X Y Z

P0 P1

X Y Z X Y Z X Y Z X Y Z

MPI I/O TAPIOCA

